1.1 学习目标

  • 学习集成学习方法以及交叉验证情况下的模型集成
  • 学会使用深度学习模型的集成学习

2.2 集成学习方法

在机器学习中的集成学习可以在一定程度上提高预测精度,常见的集成学习方法有Stacking、Bagging和Boosting,同时这些集成学习方法与具体验证集划分联系紧密。

由于深度学习模型一般需要较长的训练周期,如果硬件设备不允许建议选取留出法,如果需要追求精度可以使用交叉验证的方法。

下面假设构建了10折交叉验证,训练得到10个CNN模型。
IMG

那么在10个CNN模型可以使用如下方式进行集成:

  • 对预测的结果的概率值进行平均,然后解码为具体字符;
  • 对预测的字符进行投票,得到最终字符。

2.3 深度学习中的集成学习

此外在深度学习中本身还有一些集成学习思路的做法,值得借鉴学习:

2.3.1 Dropout

Dropout可以作为训练深度神经网络的一种技巧。在每个训练批次中,通过随机让一部分的节点停止工作。同时在预测的过程中让所有的节点都其作用。
IMG

Dropout经常出现在在先有的CNN网络中,可以有效的缓解模型过拟合的情况,也可以在预测时增加模型的精度。

加入Dropout后的网络结构如下:

# 定义模型
class SVHN_Model1(nn.Module):
    def __init__(self):
        super(SVHN_Model1, self).__init__()
        # CNN提取特征模块
        self.cnn = nn.Sequential(
            nn.Conv2d(3, 16, kernel_size=(3, 3), stride=(2, 2)),
            nn.ReLU(),
            nn.Dropout(0.25),
            nn.MaxPool2d(2),
            nn.Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2)),
            nn.ReLU(), 
            nn.Dropout(0.25),
            nn.MaxPool2d(2),
        )
        # 
        self.fc1 = nn.Linear(32*3*7, 11)
        self.fc2 = nn.Linear(32*3*7, 11)
        self.fc3 = nn.Linear(32*3*7, 11)
        self.fc4 = nn.Linear(32*3*7, 11)
        self.fc5 = nn.Linear(32*3*7, 11)
        self.fc6 = nn.Linear(32*3*7, 11)
    
    def forward(self, img):        
        feat = self.cnn(img)
        feat = feat.view(feat.shape[0], -1)
        c1 = self.fc1(feat)
        c2 = self.fc2(feat)
        c3 = self.fc3(feat)
        c4 = self.fc4(feat)
        c5 = self.fc5(feat)
        c6 = self.fc6(feat)
        return c1, c2, c3, c4, c5, c6

2.3.2 TTA

测试集数据扩增(Test Time Augmentation,简称TTA)也是常用的集成学习技巧,数据扩增不仅可以在训练时候用,而且可以同样在预测时候进行数据扩增,对同一个样本预测三次,然后对三次结果进行平均。