一个成熟合格的深度学习训练流程至少具备以下功能:
- 在训练集上进行训练,并在验证集上进行验证;
- 模型可以保存最优的权重,并读取权重;
- 记录下训练集和验证集的精度,便于调参。
4.1 学习目标
- 理解验证集的作用,并使用训练集和验证集完成训练
- 学会使用Pytorch环境下的模型读取和加载,并了解调参流程
模型过拟合的情况有很多种原因,其中最为常见的情况是模型复杂度(Model Complexity )太高,导致模型学习到了训练数据的方方面面,学习到了一些细枝末节的规律。
解决上述问题最好的解决方法:构建一个与测试集尽可能分布一致的样本集(可称为验证集),在训练过程中不断验证模型在验证集上的精度,并以此控制模型的训练。
- 训练集(Train Set):模型用于训练和调整模型参数;
- 验证集(Validation Set):用来验证模型精度和调整模型超参数;
- 测试集(Test Set):验证模型的泛化能力。
那么如何划分本地验证集?
- 留出法(Hold-Out)
直接将训练集划分成两部分,新的训练集和验证集。这种划分方式的优点是最为直接简单;缺点是只得到了一份验证集,有可能导致模型在验证集上过拟合。留出法应用场景是数据量比较大的情况。
- 交叉验证法(Cross Validation,CV)
将训练集划分成K份,将其中的K-1份作为训练集,剩余的1份作为验证集,循环K训练。这种划分方式是所有的训练集都是验证集,最终模型验证精度是K份平均得到。这种方式的优点是验证集精度比较可靠,训练K次可以得到K个有多样性差异的模型;CV验证的缺点是需要训练K次,不适合数据量很大的情况。
- 自助采样法(BootStrap)
通过有放回的采样方式得到新的训练集和验证集,每次的训练集和验证集都是有区别的。这种划分方式一般适用于数据量较小的情况。
在本次赛题中已经划分为验证集,因此选手可以直接使用训练集进行训练,并使用验证集进行验证精度(当然你也可以合并训练集和验证集,自行划分验证集)。
4.2 模型训练与验证
在本节我们目标使用Pytorch来完成CNN的训练和验证过程,CNN网络结构与之前的章节中保持一致。我们需要完成的逻辑结构如下:
- 构造训练集和验证集;
- 每轮进行训练和验证,并根据最优验证集精度保存模型。
注意:Google colab 最好将文件放到/home/目录下,否认直接读取google driver文件速度很慢,取决于网络I/O
模型调参流程
深度学习原理少但实践性非常强,基本上很多的模型的验证只能通过训练来完成。同时深度学习有众多的网络结构和超参数,因此需要反复尝试。训练深度学习模型需要GPU的硬件支持,也需要较多的训练时间,如何有效的训练深度学习模型逐渐成为了一门学问。
深度学习有众多的训练技巧,比较推荐的阅读链接有:
http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html
http://karpathy.github.io/2019/04/25/recipe/
本节挑选了常见的一些技巧来讲解,并针对本次赛题进行具体分析。与传统的机器学习模型不同,深度学习模型的精度与模型的复杂度、数据量、正则化、数据扩增等因素直接相关。所以当深度学习模型处于不同的阶段(欠拟合、过拟合和完美拟合)的情况下,大家可以知道可以什么角度来继续优化模型。
在参加本次比赛的过程中,我建议大家以如下逻辑完成:
1.初步构建简单的CNN模型,不用特别复杂,跑通训练、验证和预测的流程;
2.简单CNN模型的损失会比较大,尝试增加模型复杂度,并观察验证集精度;
3.在增加模型复杂度的同时增加数据扩增方法,直至验证集精度不变。
本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!